Inferring transformations from shape features
نویسندگان
چکیده
منابع مشابه
Inferring Causal History from Shape
The shape of on object often seems to tell us something about the object’s history; that is, the processes of growth, pushing, stretching, resistance, indentation, ond so on, that formed the object. A theory is offered here of how people are able to infer the causal history of natural objects such as clouds, tumors, embryos, leoves, geological formations, and the like. Two inference problems ar...
متن کاملIntroducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کاملInferring statistically significant features from random forests
Embedded feature selection can be performed by analyzing the variables used in a Random Forest. Such a multivariate selection takes into account the interactions between variables but is not straightforward to interpret in a statistical sense. We propose a statistical procedure to measure variable importance that tests if variables are significantly useful in combination with others in a forest...
متن کاملInferring relevant features: from QFT to PCA
In many-body physics, renormalization techniques are used to extract aspects of a statistical or quantum state that are relevant at large scale, or for low energy experiments. Recent works have proposed that these features can be formally identified as those perturbations of the states whose distinguishability most resist coarse-graining. Here, we examine whether this same strategy can be used ...
متن کاملInferring Shape Evolution
Dynamic shapes represent an important issue in several scientific and technological contexts. The current article presents a model-based mathematic-computational approach for inferring the processes of neural evolution, including analytical mappings, convolution models and normal wavefront propagation, illustrated with respect to stationary and non-stationary evolutions along time and space. 20...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vision
سال: 2019
ISSN: 1534-7362
DOI: 10.1167/19.10.240a